Interacting Proteins on Human Spermatozoa: Adaptive Evolution of the Binding of Semenogelin I to EPPIN

نویسندگان

  • Erick J. R. Silva
  • Katherine G. Hamil
  • Michael G. O’Rand
چکیده

Semenogelin I (SEMG1) is found in human semen coagulum and on the surface of spermatozoa bound to EPPIN. The physiological significance of the SEMG1/EPPIN interaction on the surface of spermatozoa is its capacity to modulate sperm progressive motility. The present study investigates the hypothesis that the interacting surface of SEMG1 and EPPIN co-evolved within the Hominoidea time scale, as a result of adaptive pressures applied by their roles in sperm protection and reproductive fitness. Our results indicate that some amino acid residues of SEMG1 and EPPIN possess a remarkable deficiency of variation among hominoid primates. We observe a distinct residue change unique to humans within the EPPIN sequence containing a SEMG1 interacting surface, namely His92. In addition, Bayes Empirical Bayes analysis for positive selection indicates that the SEMG1 Cys239 residue underwent positive selection in humans, probably as a consequence of its role in increasing the binding affinity of these interacting proteins. We confirm the critical role of Cys239 residue for SEMG1 binding to EPPIN and inhibition of sperm motility by showing that recombinant SEMG1 mutants in which Cys239 residue was changed to glycine, aspartic acid, histidine, serine or arginine have reduced capacity to interact to EPPIN and to inhibit human sperm motility in vitro. In conclusion, our results indicate that EPPIN and SEMG1 rapidly co-evolved in primates due to their critical role in the modulation of sperm motility in the semen coagulum, providing unique insights into the molecular co-evolution of sperm surface interacting proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional studies of eppin.

Our laboratory has characterized EPPIN [epididymal protease inhibitor; SPINLW1] as a novel gene on human chromosome 20q12-13.2, which encodes a cysteine-rich protein of 133 amino acids with a calculated molecular mass of 15.283 kDa, containing both Kunitz-type and WAP (whey acidic protein)-type four-disulfide core consensus sequences. Eppin is secreted by Sertoli cells in the testis and epididy...

متن کامل

Molecular mechanism of epididymal protease inhibitor modulating the liquefaction of human semen.

AIM To study the molecular mechanism of epididymal protease inhibitor (Eppin) modulating the process of prostate specific antigen (PSA) digesting semenogelin (Sg). METHODS Human Sg cDNA (nucleotides 82-849) and Eppin cDNA (nucleotides 70-723) were generated by polymerase chain reaction (PCR) and cloned into pET-100D/TOPO. Recombinant Eppin and Sg (rEppin and rSg) were produced by BL21 (DE3). ...

متن کامل

AB213. Correlation of epididymal protease inhibitor and Fibronectin in human semen

OBJECTIVE Epididymal protease inhibitor (Eppin) was located on the surface of spermatozoa and modulates the liquefaction of human semen. Here, we identify the correlative protein partner of Eppin to explore the molecular mechanism of liquefaction of human semen. METHODS (1) Human seminal vesicle proteins were transferred on the membrane by Western blotting and separated by 2-D electrophoresis...

متن کامل

AB073. Semen liquefaction molecular pathways

Objective: Human semen is the jelly-like substance mainly containing semenogelin 1 (Sg1) and fibronectin (Fn) with the characteristics of coagulation and liquefaction in a short time. In our previous study, we have identified that Eppin could interact with Sg. Eppin C-terminal fragment bind the Sg fragment containing the only cysteine in human Sg I (Cys-239). Besides that, during semen liquefac...

متن کامل

A locus on chromosome 20 encompassing genes that are highly expressed in the epididymis.

During liquefaction of the ejaculate, the semen coagulum proteins semenogelin I (SEMG1) and semenogelin II (SEMG2) are degraded to low molecular mass fragments by kallikrein-related peptidase 3 (KLK3), also known as prostate-specific antigen. Semenogelin molecules initiate their own destruction by chelating Zn(2+) that normally would completely inhibit the proteolytic activity of KLK3. In a sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013